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ABSTRACT

Jeremy Thomas Neyhart
Automated segmentation of radiodense tissue in digitized mammograms using a

constrained Neyman-Pearson classifier
2002

Dr. Shreekanth Mandayam
College of Engineering

Breast cancer is the second leading cause of cancer related mortality among

American women. Mammography screening has emerged as a reliable non-invasive

technique for early detection of breast cancer. The radiographic appearance of the female

breast consists of radiolucent (dark) regions and radiodense (light) regions due to

connective and epithelial tissue. It has been established that the percentage of radiodense

tissue in a patient's breast can be used as a marker for predicting breast cancer risk. This

thesis presents the design, development and validation of a novel automated algorithm for

estimating the percentage of radiodense tissue in a digitized mammogram. The technique

involves determining a dynamic threshold for segmenting radiodense indications in

mammograms. Both the mammographic image and the threshold are modeled as

Gaussian random variables and a constrained Neyman-Pearson criteria has been

developed for segmenting radiodense tissue. Promising results have been obtained using

the proposed technique. Mammograms have been obtained from an existing cohort of

women enrolled in the Family Risk Analysis Program at Fox Chase Cancer Center

(FCCC). The proposed technique has been validated using a set of ten images with

percentages of radiodense tissue, estimated by a trained radiologist using previously

established methods. This work is intended to support a concurrent study at the FCCC

exploring the association between dietary patterns and breast cancer risk.
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MINI - ABSTRACT

Jeremy Thomas Neyhart
Automated segmentation of radiodense tissue in digitized mammograms using a

constrained Neyman-Pearson classifier
2002

Dr. Shreekanth Mandayam
College of Engineering

An automated technique for the segmentation of radiodense tissue in digitized

mammograms was developed. The results were validated by a trained radiologist using

an accepted technique with images provided by Harvard Medical School.
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CHAPTER 1: INTRODUCTION

Cancer of the human body is one of the most deadly forms of disease. In 1999, It

was the second leading cause of death among Americans, accounting for 21.7% of deaths

among women and 24.3% of deaths among men [1]. Cancer related disease was second

only to heart disease as a cause of death for Americans. As such there is much interest in

the detection, diagnosis, treatment and eradication of cancer. For American women breast

cancer is particularly pervasive. Breast cancer has consistently been the second leading

cause of cancer related mortality among American women [2]. In recent years breast

cancer mortality has seen only a slight decline most likely due to early detection by

doctors and an overall increase in awareness of patients [3].

1.1 Medical Imaging

The need to analyze the human body is paramount to the advancement of

medicine. Medical imaging seeks to analyze the structure, function and pathology of the

body using nondestructive techniques. Interrogation methods employ x-rays, ultrasound,

magnetic resonance, radioactivity, etc to image the human body. The analysis of images

so obtained is used in almost every aspect of health care. As computational power

increases, implementing complicated algorithms to perform medical imaging becomes

easier. The process of modem medical imaging can be broken into six areas [4];

1) Enhancement
2) Segmentation
3) Quantification
4) Registration
5) Visualization
6) Compression and communication
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These areas represent the different tasks that are needed to effectively analyze portions of

the body. Since health care providers need to examine every aspect of the body; from the

cellular level, to the organs and system level, then no single solution is possible, or

practical. Different techniques need to be developed to allow the analysis of specific parts

of the body. These operations are not mutually exclusive. For instance, the algorithm

proposed in this thesis uses novel techniques in enhancement, segmentation and

visualization to perform the required task effectively.

1.1.1 Enhancement

Enhancement improves the visual conditioning of an image. This includes

contrast correction and noise reduction. In images, noise can be picked up in the

communication channel or be intrinsic to the process. Noise is especially of concern to

medical imaging because of the low contrast resulting from many imaging modalities.

This noise can easily blur the boundary between normal and abnormal tissue, or between

regions of interest and regions of disregard. Enhancement algorithms attempt to reduce

this noise and improve the contrast in regions of interest. These algorithms can be used as

a stand-alone process, for instance, improving the viewability of an image for a

radiologist. They are also used as preprocessing steps for segmentation and quantification

algorithms. Proper image enhancement is paramount to a successful medical imaging

algorithm.

1.1.2 Segmentation

In medical imaging the captured image often contains more area than needs to be

analyzed. When this is the case, the region of interest needs to be segmented so that

2
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further analysis can be performed. This can be accomplished using anything from simple

threshold selection or interactive region selection to advanced algorithms using automatic

region growing or fuzzy connectedness. The process of segmentation can be considered

the most important step in the medical imaging process. This is because the accuracy of

the segmentation algorithm has a profound impact on subsequent image processing.

1.1.3 Quantification

Quantification algorithms are used to analyze segmented regions. A number of

measurements can be taken from these regions. They can be of a variety of structures and

their properties. Because of this diversity, quantification algorithms are task specific.

They allow the researcher to make measurements of the human body in a repeatable and

consistent manner. The quantification process is highly dependent of the performance on

the segmentation algorithms, as proper measurements cannot be made if erroneous data is

present. Proper quantification is also highly dependent on the selected features of the

region under inspection.

1.1.4 Visualization

Visualization involves the process of displaying data in a usable manner. This can

range from color overlays of x-rays to real-time in-situ graphics during a surgery. In the

research presented in this thesis the visualization steps seek to highlight the areas under

examination. Feature outlining, as well as black and white transformations allow easy,

visual, qualitative examination of algorithm performance against known outcomes. This

contributes to hasten the development time and improve future analysis.

3
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1.2 Medical Imaging in Mammography

Medical imaging analysis for diagnostic purposes involves the development and

implementation of techniques for the detection of malignancies or their pre-cursors. This

is a very active area of research, with much of the current work being in the area of

microcalcification detection [5 - 8]. Microcalcifications have been shown to be a good

indicator of a malignancy in the area of their discovery, accounting for nearly half of the

breast cancer detected through mammography techniques [5]. At this time many

algorithms have been presented that perform well in segmenting these cancer indications.

Methods used in the detection of microcalcifications include multiresolution wavelet

analysis [5 - 7], feature based pattern recognition [8] and Bayesian statistical techniques

[9]. Other work has focused on the misclassification of film anomalies as

microcalcifications [10] and quantifying difficulty of mammogram classification based

on image texture analysis [11].

The research work presented in this thesis focuses on risk factor analysis. Risk

factors are indications of a patient's potential for developing a disease. The American

Cancer Society separates breast cancer risk factors into two broad categories. The

categories are those that cannot be changed, and those that can be modified [3]. Risk

factors that are beyond the control of the patient include age, race, family history of

breast cancer and other similar factors. Those that can be modified are risk factors such as

obesity, alcohol consumption, hormone replacement therapy and other lifestyle factors.

Table 1.1 gives a listing of some selected breast cancer risk factors and their relative risk

from [12]. The knowledge that a radiologist has of risk factor statistics is essential to the

early detection and screening of breast cancer.

4
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TABLE 1.1 - Breast cancer risk factors from [12]

Risk Factor High-risk Group Low-risk Group Relative risk
Age Old Young >4.0
Country of Birth North America, North Asia, Africa >4.0

Europe
Socioeconomic status High Low 2.0-4.0
Marital status Never Married Ever Married 1.1-1.9
Place of residence Urban Rural 1.1-1.9
Age at first full term pregnancy > 30 years < 20 years 2.0-4.0
Age at menopause Late Early 1.1-1.9
Age at menarche Early Late 1.1-1.9
Weight, postmenopausal Heavy Lean 1.1-1.9
Previous breast cancer Yes No 2.0-4.0
Benign proliferative disease Yes No 2.0-4.0
Previous cancer (ovary or Yes No 1.1-1.9
endometrium)

Family history (first degree Yes No' 2.0-4.0
relative)
Family History (mother and Yes No >4.0
sister)
Radiation to chest Large Doses Minimal Doses 2.0-4.0
Parenchymal patterns Dysplastic Normal 2.0-4.0

Studies have shown that breast density can be used as a marker for breast cancer

risk [13]. The radiographic appearance of the female breast consists of radiolucent (dark)

regions due to fat and radiodense (light) regions due to connective and epithelial tissue.

Breast density is a measure of the area of the overall breast that is radiodense in

appearance. In this thesis the breast density will also be referred to as radiodensity or

simply density interchangeably. Figure 1.1 shows the three major regions of interest in

the mammogram, the radiodense tissue region, the radiolucent tissue region and the non-

tissue film region.

The measured association of breast density to breast cancer risk has been shown

to be higher than other, more commonly used, breast cancer risk factors [14, 15]. In

particular one study has shown that women with radiodense tissue in more than 60-75%

of the breast are at a four to six times greater risk of developing breast cancer than those

with lesser densities [16]. This work was done on a large cohort of women enrolled in the

5
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(a) Radiodense

(c) Film region

(b) Radiolucent---

FIGURE 1.1 - Mammogram X-ray with (a) radiodense and (b) radiolucent tissue
labeled, and (c) film (non-tissue) region.

Canadian National Breast Screening Study. The estimation of radiodense tissue

performed by this study was a subjective determination by trained radiologists.

One of the main hurdles of using breast density to assess a patient's risk of developing

cancer is the ability to consistently quantify its amount. Wolfe originally hypothesized

that breast density was an indicator of cancer risk [17,1 8]. He divided mammograms into

four groupings; ranging from primarily fatty to primarily dense based on the prominence

of the parenchyma. Others have defined ranges of categorization (0%, >0 to <10%, 10 to

<25%, 25 to <50%, 50 to <75%, >75% to 100%) that a trained radiologist uses to classify

a mammogram [19]. Later work presented a method of quantitatively measuring breast

density using digitized mammograms and an interactive computer program [20].

Evidence has been offered that strong correlations exist between breast density and image

properties [20]. Two properties that were explored were fractal dimension of an image

6
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[21] and regional skewness[22].

Fractal geometry was originally presented by Mandelbrot [21]. This theory

allowed for the description of complex shapes where normal Euclidian geometry fell

short. Using fractal geometry, the dimension (similar to spatial dimension) of an object

can be calculated. This dimension is a measure of the complexity of an object. When

analyzing images, fractal dimension can be used to estimate the smoothness of an image

when the image intensities are mapped like a terrain. Reported results show a strong

negative correlation between breast density and fractal dimension. This indicating that

mammograms of high radiodense tissue are smoother (i.e. more similar) and those of

lower radiodense tissue are more rough (i.e. more dissimilar)[23].

Regional skewness is a measure based on third moment histogram analysis. The

histogram of an image is a graph of the quantity of pixels in an image that are of the same

value or range of values[22]. The histogram information is irrespective of pixel position

and can provide a great deal of information about an image. Information on the skewness

of an image is given by the third moment of the image histogram. The method presented

used a normalized third moment. It was hypothesized that if a region contains mostly

fatty tissue, which is inherently lower in gray level intensity, then it will exhibit a positive

skewness. Conversely, those regions that are of a more radiodense nature, which are

inherently higher in gray level intensity, will indicate a negative skewness. To provide

better resolution, analysis was done using non-overlapping groups of pixels and averaged

to provide a single skewness measure. Analysis of this value revealed a strong correlation

between skewness and breast density [23].

7
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Although promising results were obtained using both of these means, no

quantitative measures of breast density using these techniques were presented.

Furthermore, no system for the automatic calculation of the values was presented. The

skewness measure required significant user interaction. There is very little published

work describing quantitative measures of breast density [20, 24 - 26]. The most

promising of which is presented by P.K. Saha et al. and involved the automatic

segmentation and detection of breast density in digitized mammograms. They used the

method of fuzzy connectedness to perform segmentation of different regions. The

methods presented in that work will be discussed in detail in Chapter 2.

1.3 Mammography Procedure

Mammography has been established as a useful non-invasive, low-cost technique

for the early detection of breast cancer in women. A mammogram is an x-ray image of a

breast taken from one or more views [27]. Typically, each mammogram set contains four

x-ray films. The x-rays are of the craniocaudal (CC) and mediolateral oblique (MLO)

views of both breasts. The CC view is projected down on the horizontally compressed

breast while the MLO view is projected across a breast that is compressed parallel to the

patient's pectoral muscle. Figure 1.2 shows the proper positioning of the breast and a

representative mammogram for the CC and MLO views respectively. Although much of

the x-ray capture process is now automated, proper positioning and compression of the

patient's breast by the technologist is essential to capturing a useful set of mammogram

films. After the mammogram is taken a trained radiologist traditionally performs the

diagnosis of the x-rays. The radiologist is concerned with the presence of immediate

8
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dangers to the patient, malignancy and other abnormalities. Overly high breast density is

a concern because of the difficulty it adds to the diagnostic process.

9
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Compression Plate

Film Holder

(a)

N
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'e m~~~~~~~7N'~l

Pectoral Muscle

Film

(c) (d)FIGURE 1.2 - Positioning of the (a) craniocaudal and (c) mediolateral oblique views of the breast and (b) and (d) their respective
mammographic films.
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1.4 Statement of the Problem

Mammograms x-rays are captured using a semi-automated process. The fact

remains that even though there is a great deal of care taken to provide consistent image

capture of the mammogram, many variables still exist. One of these variables is the

compression of the breast and the positioning. It is obvious that there is an inter-patient

variability in the amount of compression and accuracy of positioning that can be

accomplished. There exists an intra-patient variability from device to device. It is

foreseeable that images of the same patient, all other things being equal, captured on

different equipment, will have differing results.

There is significant need for the development of a completely automated system

for the segmentation of the radiodense tissue within a mammogram, which is invariant to

both inter- and intra-patient variability. The algorithm that is presented must

automatically and dynamically adjust a segmentation threshold to eliminate both inter-

and intra-patient variability. Mammogram images intensity values can be divided based

on two factors; variability due to inter- and intra-patient conditions, and variability due to

the prominence and amount of parenchyma in the breast tissue. With this, four cases can

be defined that illustrate these issues. They are:

1) Low radiodensity; Bright image

2) High radio density; Bright image

3) Low radiodensity; Dark image

4) High radiodensity; Dark image

11
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(h)

(C) (d)

FIGURE 1.3 - Four representative images showing (a) low radiodensity; bright image,
(b) high radiodensity; bright image, (c) low radiodensity; dark image and (d) high
radiodensity; dark image.

This can be seen in Figure 1.3, which gives an example each type of image. It can be

observed that simply choosing a single threshold to classify each image will not suffice.

Also, the choice of a simple dynamic threshold, i.e. one that chooses the top 25% of pixel

intensity values as radiodense, will be insufficient as well. The research presented here

addresses these issues.

12
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1.5 Scope and Organization of the Thesis

This thesis presents a novel algorithm for the automated segmentation and

quantification of radiodense tissue in digitized mammograms. Objective measures based

on the image gray-level statistics have been developed for tissue segmentation. The

primary objective of the research work presented in this thesis is automatic dynamic

segmentation of radiodense tissue from within the breast tissue region of a digitized

mamogram. The proposed algorithm has been exercised on mammogram images

' obtained from the Channing Laboratory of the Brigham and Women's Hospital and

Harvard Medical School. Results presented in this thesis have been validated by

independent assessments from a trained radiologist using previously established methods

for assessing radiodensity. This research is intended to support an investigation being

conducted at Fox Chase Cancer Center (FCCC), examining the correlation between

dietary patterns and breast density.

This thesis is organized as follows, this introduction is followed by a background

investigation of mammography and breast density estimation techniques in Chapter 2.

Chapter 3 presents a synopsis of techniques from random variable theory that are

employed for segmenting known random distributions. The overall approach proposed

for automatically segmenting radiodense tissue is presented in Chapter 4. In Chapter 5 the

results are presented from excising the algorithm on the digitized mammograms images.

Finally, a summary of the work is provided and future research directions are identified

in Chapter 6.

13



www.manaraa.com

CHAPTER 2: BACKGROUND

2.1 Estimation of Breast Density

Breast density was first proposed as a risk factor for breast cancer in the 1970's

by Wolfe [17, 18]. Since then, breast density has been established as a reliable marker for

breast cancer risk. There have been several attempts to perform computer-assisted

identification and segmentation of radiodense tissue regions in the breast [20, 24, 27, 28].

However, a completely automated algorithm has not yet been developed. This chapter

provides a description of prior work in estimating breast density. Table 2.1 summarizes

the advances in the estimation techniques.

2.1.1 Origin of breast density as a risk factor

Wolfe proposed that a relationship existed between a patients radiographic breast

density and their risk of developing cancer. Wolfe divided mammography films into four

broad categories: those that contained no density and three based on increasing amount of

parenchyma, the characteristic tissue of the breast. This method suffered from a great

amount of inter- and intra-observer inconsistencies. This was due to the relatively large

amount of change required to move a patient from one classification to the next. Another

reason was the complete reliance on the subjective assessment of the mammogram by the

radiologist.

2.1.2 "Toronto" method: six-category classification

Yaffe, Boyd et al have developed a method for determining the percentage of

dense tissue in the female breast, often referred to as the "Toronto" method. This method

14
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TABLE 2.1 - Summary of work in breast density analysis.

Proponents Date Approach Data Set
Wolfe [17, 18] 1976 Qualitatively classified breast

density into four categories based
on the prominence of parenchyma.

Byng, Boyd, 1992 Six-Category Classification Canadian
Yaffe, et. al. System. Six categories are defined National

[19] for breast density; 0%, >0% to Breast
<10%, 10% to <25%, 25% to Screening

University of <50%, 50% to <75% and >75% to Study
Toronto 100%. Trained radiologist

qualitatively performs
classification.

Byng, Boyd, 1994 Interactive Segmentation of Canadian
Yaffe, et. al. mammograms using a PC based National

[20, 27] computer program. Trained Breast
radiologists use gray scale Screening

University of thresholds to segment the breast Study
Toronto densities

Byng, Boyd, et. 1996 Proposed automatic analysis of Sub-set of
al. [28] breast density using fractal sixty images

dimension and regional skewness. that span a
University of Showed strong correlations wide range of

Toronto between these image properties breast
and breast density. densities.

Byng, Boyd, 1996 Analysis of images shows Canadian
Little, et. al. [29] symmetry of view. High National

correlation between breast density Breast
University of measurements of two views. Screening

Toronto Allows analysis of only one view Study
Saha, Udupa, et. 2001 Automatic Segmentation of breast 60 pairs of CC

al. [24] tissue and breast densities using and MLO
fuzzy-connectedness model. views from

University of their database.
Pennsylvania

builds on the work of Wolfe by separating mammograms into six categories. These

categories are 0%, 0 to 10%, 10 to 25%, 25 to 50%, 50 to 75% and 75% to 100%,

representing the percentage of radiodense tissue [19]. They offer a more quantitative

approach to classification attempts than those offered by Wolfe. A trained radiologist
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performs classification of a mammogram into one of the six categories. Although the

system allows for a quantitative measure, the classification is still based on the

radiologist's qualitative assessment of the mammogram under inspection.

2.1.3 Interactive segmentation

To further reduce reliance on qualitative analysis, while also achieving more

precise estimates of breast density, the Yaffe, Boyd et al developed a computer program

that allows for interactive quantitative analysis of a digitized mammogram [20, 27]. The

program allows the radiologist to load a digitized mammogram into the display area of

the program. The digitized mammogram is quantified to 12-bits of grayscale information

per pixel, which equates to 4096 discrete grayscale levels per pixel. The radiologist uses

two separate sliders to choose grayscale thresholds.

The first slider is used to choose the boundary between tissue and film. Using the

computer mouse, the radiologist will move the slider to select a threshold. The liner

position of the slider is representative of all possible grayscale levels, from 0 (black) to

4096 (white). The selected value is used as a segmentation threshold. As the slider is

moved the program overlays a graphical line indicating where the tissue boundary lies.

When the radiologist is satisfied that the boundary acceptably outlines the tissue region of

the breast they release the slider and move to the second threshold decision slider. The

second slider is used to choose the boundary between radiodense and radiolucent tissue.

This boundary is chosen in the same way as the first; however, this choice depends on the

radiologist's expertise. The training and experience of a particular radiologist allows

them to compensate for the variations in gray level intensity from image to image. The

16
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FIGURE 2.1 - Block diagram of the Toronto interactive computer method for
determination of radiodense tissue percentages. This method uses two grayscale
thresholds to determine tissue/film boundary and radiodense/radiolucent boundary.

researchers state that the use of this simple decision criterion allows for more consistent

results from the radiologist and between different radiologists. Figure 2.1 shows a block

diagram of the steps taken to analyze the mammogram.

Validation results presented in later chapters were expertly segmented using this

technique. Dr. Celia Byrne of the Channing Laboratory, Brigham and Women's Hospital

and Harvard Medical School has provided the segmented validation images.

17

I

,Jr



www.manaraa.com

2.1.4 Automatic segmentation techniques

Additional work by Yaffe, Boyd et al proposed possible methods for automatic

determination of breast density. They showed that certain image properties were strongly

correlated with the amount of radiodensity that was calculated in the breast region by an

expert system [28]. Using a subset of 60 images chosen from their database to cover a

wide range of radiodensity measurements, they showed strong correlations between both

fractal dimension of an image and regional skewness with the calculated amount of breast

density in the images as described below.

Fractal geometry was originally defined by Mandelbrot [21]. The analysis of

images using fractal methods allows for quantitative measures of the image smoothness

over a terrain mapping. Reported results show a strong negative correlation between

breast density and fractal dimension, indicating that mammograms with greater

radiodense tissue are smoother (i.e. more similar) and those with lower radiodense tissue

are rougher (i.e. more dissimilar)[28].

The second method analyzed is the use of the third moment histogram

information. This method is known as regional skewness. The hypothesis was presented

that if a region contains mostly fatty tissue, which is inherently lower in gray level

intensity, then it will exhibit a positive skewness. Conversely, those regions that are of a

more radiodense nature, which are inherently higher in gray level intensity, will exhibit a

negative skewness. To provide better resolution, analysis was done using non-

overlapping groups of pixels and averaged to provide a single skewness measure.

Analysis of this value revealed a strong correlation between skewness and breast density

[28].
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Although promising results were obtained using both methods, no quantitative

measures of breast density using these techniques have been presented. Furthermore, no

system for the automatic calculation of the system parameters has been presented.

Specifically, the skewness measure required the interactive segmentation of the breast

tissue region from the rest of the mammography film.

2.1.5 Symmetry of views

The typical mammography film set includes four views; one images each of the

CC and MLO view for both breasts. Automatic analysis of the breast is hindered in the

MLO view by the inclusion of the pectoral muscle in the x-ray. Automatic segmentation

of this muscle would present a difficult challenge. However, it has been shown that the

separate analysis of the MLO and CC views results in similar findings of breast density

(a) (b)

FIGURE 2.2 - (a) CC and (b) MLO views of the same breast, shows the appearance of
the pectoral muscle in the MLO view.
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[29]. This allows the investigation of only a single view per breast. Because of the

inclusion of the pectoral muscle in most MLO views, as shown in Figure 2.2, analysis can

now be performed only on the CC views of each x-ray set.

2.1.6 Segmentation of radiodense tissue using fuzzy connectivity

Researchers at the University of Pennsylvania have recently proposed a method

for the automatic segmentation of mammographic densities using a fuzzy connectedness

[24]. The method of fuzzy connectedness assesses the association of each pixel region to

its neighbors. If two regions are found to have a high affinity for each other then they are

said to "hang together." This occurs even when two regions have different intensities.

Human vision is analogous to this scheme. A human observer is able do discern the

objects in a scene even if regions within that object are not completely homogeneous.

The University of Pennsylvania method takes one step to analyze the background of the

image and associate all regions within that area. In the second step, the regions of dense

tissue are determined. The University of Pennsylvania method requires knowledge of

estimated parameters for the region that is to be segmented.

Using the estimated members of the reference region, a so-called "connectedness

scene" is created. This scene designates the likeliness for a region to be associated with

the reference region. The investigators begin by orienting all images to the left to

establish the background location. The upper and lower right corners of the image are

chosen as the starting point for the background assignment. This resulting image is then

used to create a binary segmentation mask. This allows processing of only the tissue

region in further steps. The algorithm is next exercised on the tissue region of the image.
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In order to find a reference region, the researchers assigned the highest 32% of intensities

found in the histogram of the tissue region as the reference. Results of the algorithm show

a strong correlation to segmentation results achieved by a trained radiologist performing

manual segmentation.

In this chapter, an overview of previous research work in the area of estimating

the breast density, has been presented. Each of these methods offers advancement over

past work. The "Toronto" method relies heavily on user input, it is currently the accepted

method for segmenting radiodense tissue and will be used as a baseline for comparison of

results presented in this thesis. In the following chapter a description of modeling images

a collections of Gaussian random fields is presented. An overview of binary segmentation

algorithms is also provided.
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CHAPTER 3: Modeling and segmentation of Gaussian random images

3.1 Introduction

The following chapter will lay the foundations of image modeling that allow the

development of automated segmentation algorithms. The basis for this is the ability to use

a Gaussian random field to model an image, which is discussed in the next section. The

proposed distribution functions are outlined and canonical images are presented. In

Section 3.3 two powerful segmentation algorithms are presented, the Bayesian classifier

and the Neyman-Pearson classifier.

Much of the work presented in this chapter is random variable theory. A random

variable, X, is a mapping of the results of a random experiment, E, onto the real number

line, R. Much information can be realized from the analysis of these random variables

and their two-dimensional counterpart, random fields. The reader is referred to ref. [30]

for a detailed explanation of random variable theory.

3.2 Image Modeling

The ability to compare different segmentation techniques requires that the image

can be modeled mathematically. To create a model, the image is recast as a random field.

The image is modeled as a stationary Gaussian random field using the equation

f(x, y) = mf + f W(X, y) (3.1)

where f(x, y) is the gray-level value in the image at location (x, y), mf and of are the

local mean and standard deviation of f(x, y) and w(x, y) is a zero-mean, unit variance,

Gaussian random field. Empirical evidence suggests that such a model is reasonable for
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(a) (b)

FIGURE 3.1 - (a) Original image and (b) modeled image using 4 x 4 local regions.
Image size is 512 x 512 pixels.

typical images [31]. The above prediction holds true if two criteria are met

(a) The image, f(x,y), is stationary

(b) The local region modeled is small.

If both of these criteria are met then any image can be modeled as a collection of

zero mean, unit variance Gaussian random fields that have been scaled and translated

along the real number line using local means and variances. This is illustrated with a

canonical image. Figure 3.1 (a) shows the original image and Figure 3.1 (b) shows the

modeled image using 4 x 4 local regions and w(x,y) generated using a pseudo random

number generator. For this image the region size of 4 x 4 is sufficiently large enough to

contain meaningful statistical information and small enough relative to the images 512 x

512 size to fairly accurately model the image.
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3.2.1 Random variables used

The Gaussian random variable is chosen for this research as a good candidate for

modeling the different portions of tissue that are present in the mammogram. The

cumulative distribution function (CDF) of the Gaussian random variable is given as

1
Fx(X) = ( (3.2)

l+e 2r2

where the mean, m, is any real number and the variance, a, is any positive real number

[30]. Figure 4.2 (a) plots the Gaussian CDF over a range of inputs, x. The CDF is capable

of mapping a possibly infinitely large range of values onto a set range, [0,1] for instance

as shown in the figure. Differentiating the CDF produces the probability density function

(PDF) of the Gaussian random variable, and is given as

(x-m)2
1fx =--_ e 2 2 =N(m,c 2) (3.3)
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FIGURE 3.2 - (a) CDF of a Gaussian random field and (b) derivative of the CDF whish
is the PDF of the Gaussian random field.
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which is often written as N(m, 02) to denote a density function of the normal variety. The

plot of the PDF is given in Figure 3.2 (b). The PDF shows the probability for the outcome

of a random experiment. The mean value of the PDF function, m, is the point of highest

probability of the function. For the discrete case it is defined as

= -x j f(xj). (3.4)

The variance parameter, 2, dictates the spread of the function. For the discrete case it is

defined as

2 = (j - )2 f(x). (3.5)
J

Using the information that can be extracted from a modeled version of an image,

mathematically significant decisions can be made about an image. These decisions can be

made automatically and dynamically for any image.

3.2.2 Canonical images

This section will show how statistical information can be used to automatically

make decisions about and segment an image. A discrete Gaussian random field is

generated

f(x, y) = w(x, y) for x = 0: 255, y = 0:255 (3.6)

were w(x,y) is a Gaussian distributed white noise image with range {0,255}. The image

generated is shown in Figure 3.3 (a). The CDF of the image can be empirically found by

performing a series of binary segmentations. If the image is segmented about each point

in the range and the percentage of black pixels plotted the result is the CDF of the

Gaussian random field, Figure 3.3 (b). Differentiating the CDF gives the PDF of the
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FIGURE 3.3 - (a) Gaussian random field of range {0,255 }, (b) plot of percentage of
black pixels while varying segmentation threshold across entire range shows the CDF of
the random field, (c) the differentiation of the CDF of the random field is the PDF and
(d) result of segmenting (a) about the mean of the PDF results in P[white] = P[black] =
0.5.

Gaussian random field as seen in Figure 3.3 (c). Finally segmenting this image about the

mean of the PDF results in equal probabilities of black and white pixels, Figure 3.3 (d).

The u resulting Gaussian random field has m = 128. This canonical image can be used as a

baseline for other image segmentation. The pixels that have an intensity value lower then

the meca can be said to be 'dark' and those higher then the mean are 'bright.'

Consider the effect of variation in ambient imaging (lighting) conditions in the

choice of the segmentation threshold. This scenario is shown in images 1, 2, and 3 in

Figure 3.4 (a), each of which have identical distributions of pixel gray-level values, but
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have been imaged in varying lighting conditions.

These three images are converted to binary images by segmenting them using

identical thresholds; the resulting binary images are shown in Figure 3.4 (b). These

binary images have unequal distributions of black (0) and white (1) pixels. However, if

the three images are segmented using a threshold that is set to the mean value of all the

pixel gray-level values for each image, the binary images are as shown in Figure 3.4 (c).

These three binary images compensate for the variation in imaging conditions and yield

equal distributions of black (0) and white (1) pixels.

Essentially this method allows for the proper segmentation of a single density

(a) (D) (C)

FIGURE 3.4 - (a) Three canonical random Gaussian fields. Images 1 and 3 have means
higher and lower then the median respectively. (b) Images segmented about the median
and (c) segmented about the mean of their individual PDF. The probability of white and
black pixels is approximately equal in each image in (c).
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function invariant to the mean of the distribution. This property suggests that this method

can be successfully employed to minimize the inconsistencies in testing conditions in

mammograms that produce lighter or darker x-ray films.

3.3 Classical Image Segmentation Techniques

The previous sections showed that an image could be modeled as a combination

of Gaussian random fields. It also showed that an image, if it is Gaussian in nature, can

be automatically and dynamically segmented about the mean of its PDF to divide the

image into 'dark' and 'bright' regions. In this section, that concept is built upon with two

random field classifiers. Both of these classifiers are based on the statistics of two

distributions. The first is the Bayesian classifier; the second is the Neyman-Pearson

classifier.

3.3.1 Bayesian Classifier

Baye's decision criterion states that for two distributions that are Gaussian in

nature, with equal variance but different means, classification of data can be performed

using the following minimum distance function:

TB = 2 (3.7)
2

where TB is the segmentation threshold, yL and u2 are the means of the distributions for

the two classes. For binary classification, the two classes are '0' and '1'. Class 'O'

represents the members associated with the distribution of mean jut. The class '1'

representing the pixels associated with the distribution of mean 12. Each pixel gray-level
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FIGURE 3.5 - Illustration of two distributions with Bayesian classifier segmentation
threshold, TB, labeled. Note the minimization of classification error for both distributions.

value, f(x, y), is compared with the Bayesian threshold, TB. If f(x, y) is greater than

TB, the pixel is determined to be of class '1' otherwise it is said to be of class '0.' Figure

3.5 illustrates the decision boundary of the Bayesian classifier.

3.3.2 Neyman-Pearson Classifier

The Neyman-Pearson algorithm attempts to improve critical error in classification

by providing a bias towards false-positive response. In many situations, it is more

desirable to indicate false-positive then false-negative. One example cited in the literature

is the air traffic control radar systems [32]. It is more desirable to have a radar system

indicate the presence of an aircraft when there is none than to have it indicate no aircraft

when one is actually present. The Neyman-Person classifier is given by the equation

TNP = 2 - 1 + c2 r (3.8)
2 2 -- 1

29



www.manaraa.com

c/

0

0

z
5j
ZD

Gray-level intensity

FIGURE 3.6 - Illustration of two distributions with Neyman-Pearson classifier
segmentation threshold, TNP, labeled. Note the classification bias towards the mean of
the second distribution, /2.

were 12 and Jul are the means of the two distributions, o2 is the variance of the

distributions and ir is the error minimization parameter. The distribution whose mean is

given as ]2 is known as the null hypothesis. This is the decision with the greatest

consequences if not chosen. Cast onto an image segmentation problem the null

hypothesis is the area that is being over classified. To this end the Neyman-Pearson

technique can be used in any binary classification operation where a bias is desired

towards one classification than the other. Figure 3.6 illustrates the threshold, TNP, chosen

by the Neyman-Pearson classifier.

The methods presented in this chapter allow for the modeling of an image as a

mathematically tractable collection of Gaussian random fields. They also show how

variations in the mean can be described by modeling the region to be segmented as a

Gaussian random variable. Finally some classical statistical segmentation approaches are

30

I



www.manaraa.com

presented.

These methods provide a means for developing an automated segmentation

approach based on the underlying statistical properties of a mammogram image. In the

following chapter describes the approach used to accomplish this task. The development

of a novel algorithm, based of the properties of the Neyman-Pearson classifier, is

presented.
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CHAPTER 4: APPROACH

4.1 Introduction

The overall research approach is shown in Figure 4.1. A flow diagram

demonstrating the process of determining the percentage of radiodense tissue is shown in

Figure 4.2. The approach taken addresses two main issues. The first is the actual

segmentation of the arbitrarily shaped breast tissue region from within the rectangular

shaped x-ray film. This is an edge detection problem that is accomplished using a

multiresolution segmentation mask. After the breast tissue is segmented radiodense tissue

indications within the breast region can be identified and quantified. The challenge here

is that the gray-level intensities vary from x-ray to x-ray and locally across the same x-

ray. This is a threshold estimation problem. Several techniques have been developed for

dynamically determining a threshold that is capable of segmenting the radiodense tissue.

FIGURE 4.1 - Overall

Digitized Mammogram

Image Pre-processing

Mask Generation

Tissue Segmentation

Threshold Determination

Density Estimation

Image Post-processing

Radiodense Tissue Percentage

approach breast density estimation.
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FIGURE 4.2 - Flow diagram of research approach.

Details of these approaches are presented in a later section. The steps taken to implement

this research are provided in detail in the following sections.

4.2 Digitization and Pre-processing

The data used in this research comes from the Family Risk Analysis Program at

FCCC. This cohort of women includes the daughters, mothers and grandmothers of a

population of women that are given regular mammography screenings. Each set of

mammograms contains four x-ray films. The x-rays are of the cranio-caudal (CC) and

mediolateral oblique (MLO) views of both breasts. The CC view is projected down on

the horizontally compressed breast while the MLO view is projected across a breast that

is compressed parallel to the patient's pectoral muscle [33]. It has been shown that the

separate analysis of the MLO and CC views results in similar findings of breast density
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[20]. This allows the investigation of only a single view per breast. Because of the

inclusion of the pectoral muscle in most MLO views, as shown in Figure 4.3, analysis is

performed only on the CC views of each x-ray set. All x-ray films were digitized at 500

dpi using an Agfa medical-grade film scanner. This resolution was chosen after

conducting an extensive survey of existing digital mammography databases [34]-[38].

The digitized image was encoded using 8-bit resolution. An on-line database was created

for managing (storing and retrieval) digitized mammogram images at Rowan University.

This database, created by Mr. David Chezem of Rowan University Instructional

Technologies, uses Macromedia ColdFusion 5.0 [39] and allows secure password-

protected access for project team members. The database is indexed using FCCC patient

ID, age and date of mammogram.

The first step in image analysis is to map the 8-bit intensity value from the

scanner to representative gray scale intensities. Each pixel of data was assigned one of

256 gray-level values ranging from 0 (black) to 1 (white). Each image is oriented to place

(a) (b)

FIGURE 4.3 - (a) CC and (b) MLO views of the same breast, shows the appearance of
the pectoral muscle in the MLO view.
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the breast region on the left side to further aid automated analysis.

4.3 Mask Generation

To properly quantify the amount and percentage of radiodense tissue present in

the breast, there needs to be a technique for separating the tissue region of the x-ray from

the film region. To accomplish this, a segmentation mask is used to separate the tissue

region from the film region. The mask template is a binary matrix of size equal to that of

the original image. The segmentation algorithm described below determines which pixels

of the image correspond to a tissue region, and assigns the value 1 (white) to the

corresponding regions of the matrix. The rest of the matrix, corresponding to the non-

tissue region, is set to 0 (black). This process allows subsequent identification of

radiodense regions in the image by concentrating on the tissue region only.

4.3.1 Generation of the Segmentation Mask

A line-scan of a single row in the digitized mammogram is shown in Figure 4.4.

The goal is to identify the gray-level transition at the boundary of the tissue region. Note

that this line-scan exhibits both local and global variations in gray-level. The global

variation corresponds to the transition in the x-ray from the tissue to the non-tissue

region, which is often obscured by the local variations corresponding to local changes in

tissue density. The large variance of the local variations makes it impossible for a preset

threshold to identify the tissue region (the left half of the scan). Furthermore, these local

variations within the tissue region also make it very difficult to employ standard edge

detection algorithms. A discrete wavelet transform (DWT) based multiresolution
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(a) (b)

FIGURE 4.4 - (a) Original mammogram image and (b) line-scan of single row of the
image as indicated by the line placed on the original image.

decomposition [40] is used to simultaneously model both these variations in the gray-

level for each line-scan in the original X-ray image. A polynomial fit is then used to

correlate adjacent line scans to generate the final mask template. Figure 4.5 (a) shows a

typical image and 4.5 (b) shows the associated automatically created segmentation mask.

(a) (b)

FIGURE 4.5 - (a) Typical image and (b) automatically created segmentation mask.
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4.3.1.1 Discrete Wavelet Transform

The DWT is used for modeling local variations and global variations

simultaneously in the line-scan, thereby identifying the transition from the tissue to non-

tissue region. In particular, the approximation coefficients of each line scan at a particular

decomposition level were used to remove the local variations, while conserving the

global variations. An extensive study of the image heuristics revealed that the

Daubechies mother wavelet with five vanishing moments provided the most optimal

model. The fifth level approximation coefficients of the original signal provided the

space-frequency information corresponding to the tissue boundary of the mammogram.

This model is indicated by

Yid(k) = Y(i-l)a(n) g(2k-n) (4.1)
n

Yia(k)= Y(i-l)a (n) h(2k-n)
n

where Yia and Yid are the approximation and detail (DWT) coefficients at the ith level,

respectively, and h(n) and g(n) are lowpass and highpass filters, obtained from

Daubechies scaling and wavelet functions, respectively. At level zero, YOa represents the

original raw line scan obtained from the image. Figure 4.6 shows the associated wavelet

decomposition tree for this system. Figure 4.7 illustrates a typical line scan and the

corresponding 5th level approximation coefficients. From these coefficients, a threshold

can be easily computed based on the statistical properties of the signal for identifying the

tissue boundary.
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Y2d(k)

Y2a(K)

FIGURE 4.6 - Multiresolution wavelet decomposition tree.
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FIGURE 4.7 - A typical line-scan and corresponding 5th level DWT approximation
coefficients.
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4.4 Tissue Segmentation

The mask generated using the algorithm described above is a binary matrix equal

to the size of the original image. Using the above technique the mask matrix is set to a

value of 1 (white) in all tissue regions and 0 (black) in all non-tissue regions. We then

multiply the corresponding elements in each array using

R = Oij * Sij; i=l to m, j = 1 to n (4.2)

where O is the original image and S is the segmentation mask, yields the matrix R. The

resulting matrix R is of equal size to 0 and P and contains the original gray-levels of 0 in

all regions designated by S as being of a tissue region and contains a gray-level value of 0

(black) in all regions designated by S as being a non-tissue region. Results for a typical

test image are shown in Figure 4.8.

(a) (b) tc) u

FIGURE 4.8 - Tissue segmentation results for a typical image - (a) original X-ray (b)

boundary estimation (c) mask generation (d) tissue segmented image.
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4.5 Threshold Determination

Determination of the estimated threshold relies on assumptions made about the

images under test. The following assumptions are made in developing the density

estimation algorithms:

a) Pixel gray-level is considered as a deciding factor in segmenting

radiodense tissue from radiolucent tissue regions.

b) The location and shape of the segmented tissue in the mammogram are

ignored.

Identifying the radiodense tissue region in a segmented gray-level mammogram

image essentially involves converting the 256 gray-level images to binary (black-and-

white) format. Radiodense tissue pixels will be assigned a gray-level value of 1 (white)

and all other pixels will be 0 (black). However, determining an appropriate gray-level

threshold for the conversion process is a non-trivial task. This process is non-trivial

because the threshold cannot be an absolute value, but must respond to variations in

signal intensity from image to image and local variations within the same image.

Several techniques for generating a dynamic threshold for detecting radiodense

indications have been developed. A two-step process is employed:

Step 1: Generate mathematical models of the mammogram image by studying the

statistics of the gray-level variations.

Step 2: Apply hypotheses testing (detection theory) techniques for segmenting radiodense

and radiolucent pixels.

Details of these steps are provided below.
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4.5.1 Image Modeling

The digitized mammogram image is modeled as a stationary Gaussian random

field, as described in Chapter 3, using the equation

f(x, y) = mf + af W(X, y) (4.3)

where f(x, y) is the gray-level value in the mammogram image at location (x, y),

mf and af are the local mean and standard deviation of f(x, y) and w(x, y) is a zero-

mean, unit variance, Gaussian random field. Empirical evidence suggests that such a

model is reasonable for typical images [31].

The original image is subdivided into 8 x 8 blocks; the local mean and standard

deviation for the gray-levels are estimated for these blocks. The Gaussian field is

synthesized using a pseudo-random number generator and the mammogram image model

is created. This model is completely mathematically tractable and can be used for

subsequent processing in place of the original image. Figure 4.9 shows a typical image

model result - it can be seen that the Gaussian random model is a good replica of the

original image.

(a) (D)

FIGURE 4.9 - (a) Original mammogram image and (b) its Gaussian random model. Note
that the segmentation mask has been applied to (b) using the techniques described earlier.
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4.5.2 Radiodense Tissue Segmentation

Since the mammogram image has been successfully modeled as a Gaussian

random field using its gray-level statistics, we can recast radiodense tissue segmentation

as a problem in hypothesis testing (also known as detection theory). In a detection

problem, an observation of a random variable is used to make decisions about a finite

number of outcomes [32]. In this case, the pixel gray-level under consideration, f(x, y),

is the random variable, and the two possible outcomes for that gray-level are radiodense

or radiolucent. This two-class situation is also known as binary hypothesis testing. To test

the hypothesis, the value of the random variable (pixel gray-level) is compared with a

threshold. This threshold is dynamically generated, taking into account the variation in

gray-level statistics from image to image and the local statistics within each image.

A variety of algorithms for determining a dynamic threshold for radiodense tissue

segmentation have been explored. Segmentation algorithms using four techniques are

presented - one classical, and the other three developed specifically for this study.

4.5.2.1 Image segmentation by modeling the threshold as a random variable

This algorithm was developed using data from the FCCC study. Subsequent

validation data resulted in a reevaluation of the algorithm. Methods developed for this

technique are used in the later final algorithm. This technique was originally presented in

[41, 42].

A dynamic threshold for segmentation of the radiodense tissue inside the

mammogram film, is described by the equation

Tglobal = Tnominal + UO (Tlocal- Tnominal) (4.4)
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where Tiocal represents the local gray-level variations, Tnominai represents the random

image model, a is a parametric weight parameter and Tglobal is the global threshold. If the

mammogram were a zero-mean Gaussian random image then

Tglobal = Tlocal = Tnominal = 50%. (4.5)

since this is a real image, then Tiocal must be determined. To do this, the segmentation

threshold is varied across the entire gray scale range. The image is converted to a binary

matrix with all pixels above the threshold being set to 1 (white) and all pixels below the

threshold being set to 0 (black). The effect of varying segmentation threshold on the

percentage of black pixels in a gray-level mammogram image is shown in Figure 4.10

(a). This plot resembles the cumulative distribution function (CDF) of a Gaussian random

variable. The probability density function (PDF) can be calculated by differentiating the

CDF as shown in Figure 4.10 (b). The mean value of the random variable can be

calculated using the PDF. This mean is the local segmentation threshold, Tiocal. The

parameter, a, allows the equation to be tuned using a single variable. Implementation of
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FIGURE 4.10 - (a) Effect of varying segmentation threshold on the percentage of black pixels
in a gray-level mammogram image and (b) Probability density function of the threshold
random variable.
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this technique will involve the determination of a. The resulting segmentation threshold,

Tglobal, is used to segment the radiodense tissue.

4.5.2.2 Bayesian segmentation Approach

Baye's decision criterion states that given two distributions that are Gaussian in

nature, with equal variance but different means, classification of data can be performed

using the following minimum distance function:

TB = 2 (4.6)
2

where TB is the segmentation threshold, u1 and /2 are the means of the first (radiolucent)

and second (radiodense) distributions respectively. Each pixel gray-level value, f(x, y),

is compared with the Bayesian threshold, TB. If f(x, y) is greater than TB, the pixel is

determined to be radiodense. For this algorithm to be successful, it is essential to obtain

accurate estimates of the mean values of the two kinds of pixels. Also, the algorithm

assumes equal variances (data densities) in the two regions - the latter assumption is not

always valid.

4.5.2.3 Augmented Bayesian Segmentation Approach

Analysis of the Bayesian threshold described in the previous paragraph resulted in

absolute radiodensity estimates that were unusually high. This result could be either due

to incorrect estimates of image region statistics or the fact that a Bayesian threshold is set

very low. In the Bayesian approach, the emphasis is on minimizing an average loss
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function. Augmenting the Bayesian threshold with a fixed percentage of the original

value, using the following equation, increases the threshold:

TAB = TB + PTB (4.7)

where TAB is the augmented Bayesian threshold, TB is the Bayesian threshold

determined using (4.6) and p is a fixed percentage from 0 - 100%. It should be noted that

this algorithm, like the strict Bayesian classifier, assumes that the variances of the

radiodense and radiolucent pixels are identical.

4.5.2.4 Constrained Neyman-Pearson Segmentation Approach

A constrained version of the Neyman-Pearson function has been developed. This

algorithm is based on the heuristics of the cohort of images provided for analysis.

Analysis of these images by a strict Bayesian classifier yielded consistent results in rank

but provided non-ideal percentage calculations. To overcome this issue a constrained

algorithm has been developed that biases the Bayesian classifier based on the local

variance of the image and the means of the Gaussian distributions that model the

radiodense and radiolucent tissue. The segmentation threshold is now given by the

equation:

P1 +M92 (a o2 YM P2 M
TCNP t + 2_ 1 (4.8)

2 a 2

where TCNP is the constrained Neyman-Pearson threshold, a is a scaling parameter, o2 the

local variance of the image and pul and 12 are the means of the radiolucent and radiodense

regions respectively. If a is chosen such that cmax <= a, then the bias will constrain the

algorithm to values between the Bayesian classifier output and 12. Image heuristics
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showed that this bias range would be sufficient to model the threshold of the radiodense

tissue region. As the variance of the image approaches a, the term in the first parenthesis

tends towards zero and the threshold approaches that of a pure Bayesian classifier. As the

variance of the image decreases, the amount of bias increases. As the variance

approaches zero, the threshold will move towards the mean of the radiodense tissue

region, l2.

4.6 Density Estimation and Image Post-processing

Using Tglobal the image is segmented into a binary matrix. All gray-level values

that lie above Tglobal are set to "1" (white) and all other values are set to "0" (black).

Using this new binary matrix and the segmentation mask matrix the percentage of

radiodense tissue can be determine using

%RadiodenseTissue = white x100% (4.9)
Ptotal film

where Pwhite is the total number of white pixels in the matrix, Ptotal is the total number of

pixels in the matrix and Pfilm is the total number of pixels in the film-only region, as

found using the segmentation mask.

Using the methods proposed in this chapter, a set of images was analyzed. These

images were from two separate data sets. The first was provided by FCCC from their

Family Risk Analysis Program (FRAP) database. Harvard Medical School provided the

second set of ten images for validation purposes. These validation images were

previously analyzed using the established "Toronto" method. Chapter 5 presents a

collection of the results achieved by applying the algorithms proposed in this thesis on

the two sets of images described above.
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CHAPTER 5: RESULTS

5.1 Introduction

Dr. Celia Byrne of the Channing Laboratory, Brigham and Women's Hospital,

Harvard School of Medicine provided the second set of data. This set consisted of ten

images drawn from hospitals across the country. These images are gray-scale scans of

mammogram x-rays and have been used for validating the algorithm proposed in this

thesis. It is assumed that the images are uncompressed and have not been enhanced or

adjusted in any manner after acquisition from the film scanner. Each of the raw images is

of a different patient and contains different image characteristics.

These images were initially provided to Rowan University without radiodense

percentages. A blind ranking was made in an attempt to show the abilities of the

algorithms. Following the blind study, Dr. Byrne provided the radiodensity estimates

obtained for each of the images using the "Toronto" method. As described in Chapter 3,

this method requires significant knowledge on the part of the radiologist. Although the

percentage of radiodense tissue for each image was provided, however, no gray-level

thresholds or pixel classifications were included.

5.2 Mask Generation and Tissue Segmentation Techniques

Figure 5.1 shows typical segmentation results obtained by implementing the

DWT tissue segmentation technique described in the previous chapter. The images shown

in Figure 5.1 indicate that the DWT is able to model the edge of the tissue region with

sufficient accuracy. Comparing the dynamically generated mask to a segmentation mask

that is generated manually allows for a quantitative analysis of the proximity of the mask
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(a) (b) (c) (a)

FIGURE 5.1 - Four sets of data showing (a) the original image, (b) edge of tissue region,
(c) associated mask and (d) image and mask combined.
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contour to the tissue-film boundary. The percentage difference and mean squared error

(MSE) as calculated using

%Diff= (dyn man) * 100 (5.1)
Mman

and

MSE =1 i(Man Mdyn) (5.2)
N

where Mdyn and Mman are the number of 1 (white) pixels in the DWT based segmentation

mask and the manually generated mask, respectively, and N is the total number of pixels

in the image.

Table 5.1 lists the percentage difference and MSE for each of the four images

shown in Figure 5.1. It should be noted that the manual segmentation mask is assumed to

provide the exact tissue boundary. Therefore all error figures are compared with respect

to this benchmark. However, often times in image processing applications, the true

TABLE 5.1 - Percentage and mean squared error from manually developed reference
mask for patients from figure 5.1.

Patient View Mman, Mdyn, % diff MSE
ID Manual Dynamic (x10 4)

Mask Mask
(pixels) (pixels)

1 Icc 829614 1049359 26.48 1.1641

2 rcc 861665 653900 24.11 1.1507

3 lcc 1197724 988142 17.49 1.2789

4 rcc 1049230 1216404 15.93 0.7431
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performance of the algorithm can only be assessed by subjective visual evaluation of the

resulting image. Furthermore, the MSE is only meaningful for relative comparison of

different masks. With that in mind the numbers given in Table 5.1 should be interpreted

within these guidelines.

5.3 Radiodense Tissue Segmentation Algorithms

Four algorithms have been developed for the dynamic segmentation of radiodense

tissue in the breast region of a digitized mammogram. The first algorithm was developed

and tested using data from the Fox Chase Cancer Center Family Risk Analysis (FRAP)

program. After development of this initial algorithm, validation data from Dr. Byrne was

provided. Based on the heuristics of the validation data, and the subsequently provided

radiodense tissue percentages, several algorithms were developed and exercised. The

following sections present results obtained from this portion of the research.

5.3.1 Image segmentation by modeling the threshold as a random variable

The heuristics of this data showed strong low intensity characteristics and little

information in the higher intensity regions. Figure 5.2 shows the gray-level histogram of

a typical image from the FCCC dataset. It can be seen from the figure that there is little

information contained in the higher intensity regions. Equation 4.4 was developed using

this characteristic as a basis. The scaling parameter, a, allows for fine-tuning of the

dynamic threshold generated using the algorithm. Table 5.2 shows the estimated

radiodense tissue percentages resulting from exercising the algorithm for three patients

using varying values of alpha. Figure 5.3 shows the resulting segmented tissue.
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x 10

0 0.1 0.2 0.3 0.4 0.5 0.6

Gray-level intensity

0.7 0.8 0.9

FIGURE 5.2 - Histogram of tissue region of typical image from the FCCC dataset

TABLE 5.2 - Summary of percentages of radiodense tissue for patients from Figure 5.3.

Patient a, scaling parameter
Number

0.65 0.75 0.85 0.95

1 33.95 % 37.50 % 41.96 % 45.67%

2 2.69 % 7.76 % 19.11 % 37.31 %

3 13.86 % 23.15 % 40.23 % 55.04 %
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Patient 2

Patient 3

(a) (b) (c) (d) (e)

FIGURE 5.3 - Typical results showing (a) the original image and (b-e) the binary

segmented tissue region resulting from a = 0.65,0.75,0.85,0.95 respectively for three

patients.

In order to validate the algorithm, images were needed with known radiodense

tissue percentages. While in the developmental stages of this technique, several meetings

with Dr. Cathy Evers, Head Radiologist at FCCC, indicated promise in the proposed

technique although final validation was required.
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5.3.2 Algorithm modification based on validation data

As stated, ten images were provided for validation purposes. The images provided

by Dr. Byrne are bitmap formatted files rather then mammogram film. Upon inspection

of the images it can easily be seen that the heuristics of the validation images are different

from those used to develop the algorithm outlined in Section 5.3.1. Comparing Figure 5.2

with Figure 5.4 reveals this difference. The main difference between the two sets of

images is the intensity distribution. This is most likely due to scanning conditions and the

quality of the equipment used to digitize the x-ray film.

Dr. Byrne's assistance in validation required that first a blind classification of the

x 10
4

7

6

5

4

3

2

1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 5.4 - Histogram of an image provided by Dr. Celia Byrne. Comparison to
figure 5.2 reveals the differences in the tow datasets intensity values.
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validation data be made to test the algorithms raw abilities. It was expected that the

algorithm would be able to rank the images with a certain amount of accuracy. The

following sub-sections describe the procedure for implementing the blind classification

and the final implementation of the supervised classification using the rank and

radiodense percentage data that was eventually provided.

5.3.2.1 Blind classification

Blind training refers to implementing an algorithm without using some sort of

baseline data. The baseline data has known results that allow proper gauging of the

algorithms performance. Not having this data meant that all of the parameters for

implementation of the algorithms needed to be established without expert knowledge.

The method of blind classification is common in the medical research where proper

operation can easily be gauged. In the engineering research of medical imaging, and

imaging processing in general, researchers prefer to have a baseline dataset to train their

algorithms and measure performance. This baseline data is often from established

techniques. In the case of medical image processing it is often provided by medical

researchers.

5.3.2.1.1 Initial threshold determination

Because the basis for all of the presented algorithms is the Bayesian classifier,

proper performance requires knowledge of the underlying distributions. In order to

establish this baseline a threshold was chosen for each image arbitrarily. These initial

thresholds were chosen to segment the images approximately using cues that could be
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inferred from manual inspection. The mean of each segmented region is calculated along

with the variance.

5.3.2.1.2 Initial determination of scaling parameters

Using the estimations described above the scaling parameters for the algorithms

were set to segment the images in a manner that provided a ranking consistent with visual

inspection.

5.3.2.1.3 Results

These blind segmentation results were presented to Dr. Byrne as only a ranked

set. The images were ranked from 1 to 10, with 1 corresponding to least radiodense and

10 corresponding to most radiodense. It was easily foreseeable that the predicted

percentages determined by the algorithm would be incorrect since no data was given as a

baseline. It was hoped that the blind ranking of the images would be fairly accurate when

analyzed against the radiologist percentage ranking. The results were analyzed by Dr.

Byrne after which she provided the known ranking of the images and her expertly

determined percentage of radiodense tissue for each image. The initial ranking and those

provided by Dr. Byrne are given in Table 5.3 below. Analysis showed the strongest

correlation between the constrained Neyman-Pearson method, developed specifically for

this research, and the radiologist expert results.
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TABLE 5.3 - Blind Segmentation Rank using each method and expert rank provided
afterwards by Dr. Bymrne.

Image rank using various thresholds
Patient 1: Least percent radiodense; 10: Most percent radiodense
Number

Bayesian, TB Augmented Constrained Expert
Bayesian, TAB Neyman- ranking

Pearson, provided by
TCNP Dr. Byrne

11051709 2 4 4 5
11599502 6 5 3 3
14480101 8 8 10 8
15839502 3 1 5 4
19131709 10 10 9 1
20110811 7 2 1 2
26253102 1 3 2 6
26799401 5 7 6 10
27786202 4 6 7 9
28657701 9 9 8 7

5.3.2.2 Supervised classification

Analysis of the ranked data provided by Dr. Byrne revealed that the Constrained

Neyman-Pearson algorithm had the closest correlation to the expert ranking. The

constrained Neyman-Pearson algorithm that has been presented allows for the dynamic

determination of a threshold value between the pure Bayesian classifier,

TB = 2(5.1)

where jij and \t2 are the means of two known underlying distributions and t2, the greater

of the two means. This threshold is dynamically determined based on the scaling

parameter, acc, and the variance, c 2. With knowledge of the radiodense tissue percentage

that is present in the validation images, the algorithm could be trained to give not only
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well-correlated rank but also accurate radiodense tissue estimations. There are two main

hurdles with training the algorithm:

a) Initial threshold determination for modeling the underlying distributions

that allow proper performance of the algorithm.

b) Determination of the scaling parameter, oa, with determines the

contribution of the constrained bias portion of the algorithm.

5.3.2.2.1 Automated initial threshold determination

During the blind classification of the algorithm, the underlying distribution was

estimated using an arbitrarily chosen threshold as described in Section 5.3.2.1. In order to

meet the ultimate goal of automated segmentation of the radiodense regions there needs

to be a method for dynamically determining the parameters of the underlying distribution

of the image. This was determined using a technique originally published by Neyhart et

al [41]. It can be shown that the qualitative terms, "bright" and "dark" can be quantified.

Given a Gaussian distribution all pixels with an intensity level greater then the mean of

the distribution are "bright" and all pixels with intensity levels less then the mean are

indeed "dark." This is illustrated in Figure 5.5.

It was shown that as the gray-level segmentation threshold is varied from 0 to 1

the percentage of radiodense tissue matched the cumulative distribution function (CDF)

of a Gaussian random variable. The probability density function (PDF) can then be

determined by differentiating the CDF. The mean of the PDF is the point about which the

image can be segmented into "bright" and "dark" regions. This is the point that is chosen

as the initial threshold. Using this initial threshold as the segmentation point allows for
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FIGURE 5.5 - Gaussian distribution of pixel intensities showing the regions
considered "dark" and "bright."

the determination of the means and variance of the underlying distributions.

This initial threshold needs to be augmented however. An analysis of the

heuristics of the validation images shows that this threshold very rarely segments the

radiolucent and radiodense tissue regions. It then becomes evident that the radiodense

tissue is not truly the "bright" tissue but a subset of that region containing the brightest

portions. Just as the Neyman-Pearson algorithm is able to provide a bias towards one

classification the constrained algorithm allows for a bias towards the subset of the

"bright" tissue region that contains the radiodense tissue.

5.3.2.2.2 Determination of the scaling parameter, a

The scaling parameter, c, determines where the final threshold lies. The scaling

parameter defines the contribution that the constrained portion of the equation gives to

the final threshold value. As stated in Section 5.5.2.4, if a is chosen such that imax <= O

then the bias will constrain the algorithm to values between the Bayesian classifier output

and M2. This is a fixed value used for all classifications and is set based on image
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statistics and the accuracy of the initial threshold.

There are several ways that the value of a can be chosen experimentally. The first

method involves a single training data point. Using this method a value for a is chosen so

that the percentage of radiodense tissue calculated by the algorithm matches the expertly

determined percentage of radiodense tissue. Using this technique the performance of the

algorithm is measured against the classification of the remaining nine images. The second

method involves minimizing the classification error between n out of the M images

provided (n < M). In this technique the value of a is chosen so that the smallest

classification error exists between the n data points. Performance of the algorithm is

measured against the remaining images (M - n).

5.3.2.2.3 Results

The assumption is made that the percentages of radiodense tissue provided for

validation is based only on a gray-scale threshold. Only percentage values were given for

the images. Consequently, the images were analyzed to find the associated threshold. To

obtain this threshold each image was segmented to match the given percentage of

radiodense tissue with a single gray-level value, T,. This validation threshold takes on

one of 256 values normalized on a 0 to 1 scale and accurately matches the given

percentage to within 1% of the actual value (although in most cases much closer then

that). Table 5.4 shows the quantitative segmentation results provided by Dr. Byrne and

the associated threshold, Tv, resulting from analysis of the image. Figure 5.6 shows the

actual percentage of radiodense tissue and the percentage calculated using Tv. This

illustrates the accuracy of the matched threshold at segmenting the given percentage of
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TABLE 5.4 - Validation Images and associated data; ranked by increasing radiodense
percentage.

tissue from the image.

The validation thresholds, Tv, were used as a baseline goal with which to measure

algorithm performance during implementation along with the actual percentages of

radiodense tissue. Because of the distribution of pixel intensities in the images, small

errors in threshold are capable of creating large differences radiodense tissue percentage.

For this reason performance was measured using these two criteria.

Analysis of the images using the initial threshold revealed very unsatisfactory

results in both percentage and threshold. Further analysis showed that this was the result

of the upper bound of the algorithm, M2, being less than Tv for the images. In order to

60

Image Percentage T, Expert
Number radiodense of threshold percentage

validation of from using
data validation Tv

data

19131709 1.5 0.801 1.3

20110811 2.5 0.711 2.8

11599502 12.9 0.723 13.4

15839502 13.3 0.696 14.3

11051702 21.4 0.645 21.1

26253102 22.5 0.672 21.6

28657701 33.6 0.801 33.2

14480101 40.8 0.727 41.2

27786202 50.1 0.583 50.6

26799401 55.3 0.551 55.2
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FIGURE 5.6 - Actual percentage of radiodense tissue and percentage of radiodense
tissue calculated using the best-matched threshold from Table 5.5.

allow for proper analysis of the images the threshold was augmented by a percentage.

This consequently moved the upper bound of the algorithm, /2, to greater then Tv for the

images allowing proper classification.

It was discovered, however, that over the range of images the augmented

threshold required to produce minimal classification error changed. It is already known

that knowledge of the underlying distributions is essential for proper performance of the

proposed method. Based on that knowledge and the observed behavior it can be

concluded that, for proper performance to be realized, a great deal of validation data is

needed with pixel level classification so that usable results for the underlying

distributions can more accurately be modeled.

It can be reasonably concluded that if the data can be classified using different

augmented initial thresholds and a single scaling parameter, a, then the algorithm is

performing properly. The differences in performance are due to the inability to properly
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model the underlying distributions that make up the images. Accordingly the entire set of

ten images was classified using a total of three augmented initial thresholds and a single

scaling parameter, a = 0.0025.

Figures 5.7-5.9 show results obtained from augmenting the initial threshold to

127% of its original value. Figure 5.7 is the segmented images obtained. Figure 5.8

shows the threshold that was calculated as compared to the validation threshold, T,.

Figure 5.9 shows the calculated percentage of radiodense tissue as compared with the

known percentages. It can be seen from the graph of Figure 5.9 that this analysis matches

the first three images (19131709, 20110811, 11599502) with minimal error.

Figures 5.10 - 5.12 show results obtained from augmenting the threshold to 115%

of its original value. Figure 5.10 is the segmented images obtained. Figure 5.11 shows the

threshold that was calculated as compared to the validation threshold, TF. Figure 5.12

shows the calculated percentage of radiodense tissue as compared with the known

percentages. It can be seen from the graph of Figure 5.12 that this analysis matches the

fourth through seventh images (15839502, 11051702, 26253102, 28657701) with

minimal error.

Figures 5.13-5.15 show results obtained from augmenting the threshold to 80% of

its original value. Figure 5.13 is the segmented images obtained. Figure 5.14 shows the

threshold that was calculated as compared to the validation threshold, T,. Figure 5.15

shows the calculated percentage of radiodense tissue as compared with the known

percentages. It can be seen from the graph of Figure 5.15 that this analysis matches the

last two images (27786202, 26799401) with minimal error. Image number 14480101

could not be satisfactorily classified by the algorithm using any of the three techniques.
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19131709

I .................................................

FIGURE 5.7 - Segmented images using 127% of initial threshold. This method segments 19131709, 2011081
minimal classification error.

1, 11599502 with
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FIGURE 5.8 - Threshold resulting from analysis of image using 127% of initial
threshold.
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FIGURE 5.9 - Percentage of radiodense tissue resulting from analysis of image using
127% of initial threshold.
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11 17170

FIGURE 5.10 - Segmented images using 115% of initial threshold. This method segments 15839502, 11051702, 26253102,
28657701 with minimal classification error.

64

-III qT-

-4I ...................................... . .... .... ~~·~· ·· ·......... . ... .... l-::::::::::: : :..::::::: ';::::;;:;;;;;~ ~;;;.................................~..~........~.................~....................

.dl f", I s -/'q& ,d "d"



www.manaraa.com

--- I I I-- -- -- ---I .... --- ---------- -- -- ---- -- ----

- Validation Thresh
-- Calculated Thresh

Image Number

FIGURE 5.11 - Threshold resulting from analysis of image using 115% of initial threshold.
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FIGURE 5.12 - Percentage of radiodense tissue resulting from analysis of image using 115%
of initial threshold.
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11051702

28657701 1 AAMI il

FIGURE 5.13 - Segmented images using 80% of initial threshold. This method segments 27786202 and 26799401 with minimal
classification error.
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FIGURE 5.14 - Threshold resulting from analysis of image using 80% of initial
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FIGURE 5.15 - Percentage of radiodense tissue resulting from analysis of image using
80% of initial threshold.
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Table 5.5 below shows the actual percentage of radiodense tissue given for each

image and the calculated percentages for each of the initial thresholds used. The error

percentages are given in Table 5.6. Table 5.7 shows the validation threshold, Tv, and the

thresholds calculated for each of the initial thresholds used. The error percentages are

given in Table 5.8

TABLE 5.5 - Validation threshold, Tv, and the final threshold determined for each initial
threshold.

Image Number

19131709
20110811
11599502
15839502
11051702
26253102
28657701
14480101
27786202
26799401

Validation
threshold, Tv

0.801
0.711
0.723
0.696
0.645
0.672
0.801
0.727
0.583
0.551

Threshold for
127% Initial

Threshold
for 115%
Initial
0.7346
0.6496
in dO6

0.8290
0.6961
0.7531
0.8579
0.5839

Threshold for
80% Initial

0.6578
0.5716
0.5841
0.5909
0.5378
0.5639
0.6863

0.5287
0.6980 0.6583
0.7464 0.7123

TABLE 5.6 - Percentage error for the final threshold determined for each initial
threshold. Uses I(T, - TcMp)/TI* 100%.

Image Number

19131709
20110811
11599502
15839502
11051702
26253102
28657701
14480101
27786202
26799401

Validation
threshold, Tv

Percentage
error for 127%

Percentage
error for

0.801
0.711
0.723
0.696
0.645
0.672
0.801
0.727
0.583
0.551

Percentage
error for
80% Initial

17.8777
19.6062
19.2116
15.1006
16.6202
16.0863
14.3196
I's" -1 P" An\e tI

19.6836

19.7256 12.9160
35.4628 29.2740
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TABLE 5.7 - Provided percentage of radiodense tissue and amount calculated for each
initial threshold.

Percentage
radiodense
of
validation
data
1.5
2.5
12.9
13.3
21.4
22.5
33.6
40.8
50.1
55.3

Percentage
radiodense
of 127%
Initial

Percentage
radiodense
of 115%
Initial

2279
1430
3633

Percentage
radiodense
of 80%
Initial

65.1
65.0
60.9

OU.'/t.1

6.4253
4.7723
12.5411
60.6262
24.4514
21.9876

Rank of
image based
on
algorithm
classification
1
2
4
3
5
6
7

5_______~~~~~~~~~~~~~~~~~~~~~

10
9
8

Rank of
image based
on actual
classification

1
2
3
4
5
6
7

1 ____

8
9
10

TABLE 5.8 - Percentage error for the calculated radiodense tissue percentage determined
for each initial threshold. Uses I(Tv - TCMP)I.

Image Number

19131709
20110811
11599502
15839502
11051702
26253102
28657701
14480101
27786202
26799401

Percentage
radiodense of
validation data

1.5
2.5
12.9
13.3
21.4
22.5
33.6
40.8
50.1
55.3

Percentage Percentage
error for 127% error for
Initial 115% Initial

37.72
25.94

14.97

17.72
21.05
19.82

Percentage
error for
80% Initial

63.62
62.52
47.97
58.13
44.91
46.07
30.31

1 24.13
25.64 13.80
33.31 26.63
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CHAPTER 6: CONCLUSIONS

Cancer is the second leading cause of death among American women and breast

cancer is the second most common form among women. The early detection and

treatment of breast cancer is paramount to survival of its victims. Mammography has

been established as an inexpensive, non-invasive means of screening for breast cancer.

Along with the detection of eminent danger a radiologist must be concerned with the

patients future risk of developing breast cancer. The likelihood of a person developing

breast cancer at a later date is based on the risk factors that they posses. One such risk

factor is the amount and percentage of radiodense tissue in the breast. It has been shown

that women with 60-75% breast density are at a four to six fold increase in risk to

develop breast cancer.

Trained radiologists working subjectively have traditionally performed breast

density measurements. The first system, developed in the mid-1970s, categorized breast

density in four broad areas. This system suffered greatly from inter- and intra-observer

inconsistencies since it was not based on a quantifiable measure. A revised method was

introduced that grouped mammograms into categories of increasing density by

percentage. This method allowed for greater quantitative measurement since it is based

on a definable scale. This system still required the radiologist to classify the mammogram

and, although to a lesser extent, still suffered from the fallbacks of the previous method.

More recently computer aided tools have allowed the radiologists to achieve a higher rate

of quantitative analysis by allowing them to segment out the breast density, after which

the computer program calculates the amount and percentage of the segmented density.

This method showed great improvements in consistency both between operators and
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within an operator.

An obvious next step is the automation of this process to completely quantify the

analysis system. A fully automated system would eliminate inter- and intra-observer error

common to all of the qualitative and interactive density measurement techniques.

Recently, a system to automate this process has been presented. This system uses the

method of fuzzy connectedness. After identifying a region that is within the section of

interest as a reference, the rest of the regions are then analyzed to see how strongly they

'hang together' with the reference. A so-called connectivity scene is created that shows

the closeness of each region to the reference region. This can then be thresholded to

segment the radiodense regions.

6.1 Summary of Accomplishments

This research presents a promising approach for performing automatic

segmentation of digitized mammograms. The proposed algorithm operates completely

automatically and autonomously. After initial pre-processing the system takes the

digitized mammogram and segments the breast tissue from the film background. This

process, unlike the automatic systems proposed in the literature, requires no knowledge

of the region to segment. The system creates a binary mask template that allows future

operation on only the tissue region of the digitized mammogram.

After the breast tissue is segmented from the background the algorithm analyzes

the tissue region to find the radiodense tissue. The proposed method uses a constrained

version of the Neyman-Pearson classifier. This classifier operates on knowledge of the

underlying distributions that make up the tissue region of the mammogram. It is shown in

71



www.manaraa.com

the research that an image can be modeled fairly accurately using a Gaussian random

variable. Using this random variable model an initial threshold can be automatically

calculated to allow estimation of statistics of the underlying distributions.

The algorithm varies the threshold based on the relationship of the local variance

and a scaling parameter, a, This parameter is chosen to offset the estimation error from

the initial threshold. It allows an adjustment from the pure Bayesian classifier to the mean

of the greater estimated distribution. Using this threshold the radiodense tissue is

segmented and quantified.

The research database consisted of 152 mammograms from FCCC that were

scanned by our research team. These mammograms consist of 38 patients and four films

per patient. After initial development of our algorithm a set of ten images were provided

for validation by Dr. Celia Byrne, an expert radiologist. They consisted of ten CC views

of different patients.

The proposed algorithm presented herein has been validated to work on the ten

images that were provided. Validation of this algorithm was performed in two steps. The

first step involved a blind classification attempt. Using only estimated parameters about

the images a ranking was performed that ordered the images by increasing density. Once

the blind classification was reported, Dr. Byrne provided the actual percentage of

radiodense tissue.

With the associated percentage the second step of the validation could be

performed. The algorithm was trained using one image and the tested using the remaining

nine images of the validation data. Promising results were obtained for a single scaling

parameter. Because the validation data set was so small, effective estimation of the
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underlying distributions could not be made. To compensate for these inaccuracies the

initial threshold was augmented. Using augmentation and three training images 90% of

the validation images could be ranked with a single image that was not properly classified

by the algorithm.

6.2 Recommendations for Future Work

The algorithm presented in this thesis is a first step towards developing a robust,

completely automated system for characterizing breast density in mammograms. The

following areas of research can foster the development of techniques towards achieving

this goal:

Development of experimental/algorithmic techniques for developing a formal

definition of breast density. Current research is especially hampered by the lack of a

common, agreed-upon definition for breast density.

Incorporating features other than gray-level for segmenting radiodense tissue. The

shape and location of the tissue, age of the patient, etc have to be incorporated into the

algorithm. Texture-based segmentation methods are a fertile area of research.

Develop objective validation techniques for the algorithm - rather than subjective

measures that rely on the expertise of a radiologist. Validation of mammogram

segmentation techniques using magnetic resonance imaging shows considerable promise.
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APPENDIX: MATLAB CODE

The following appendix contains all of the code used to operate the proposed

algorithm on a single image. This code was written using MATLAB Version 6 Release

12 research edition with a full suite of toolboxes.

The following code will dynamically generate a binary mask. This mask is then

saved so that the other code can call the image at any time without having to rerun this

code.

function toolman = maskmake3(image_name)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program will dynamically determine an edge/mask
% for a digitized mammographic image using a db5 wavelet
%
% Jeremy Neyhart, Mike Ciocco, Robi Polikar
% Rowan University 2001
%
% THIS VERSION FOR USE WITH BATCH IMAGE FILE OTHERWISE
% IDENTICAL TO MASKMAKE2.M
%
% vl. 1 - added histogram equalization to image after
% edge blanking process takes place
%
% V1.2 - added polyfit edge smoothing and edge line
% generation. added forced zeros to top 5% of
% image also
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% read in image
image_file = image_name(l:10);
image = imread(image_name);

% get size of origional image
[m n o] = size(image);

% we want n to be 1600 so...
image = imresize(image, 1600/n);

% convert from grb to gray
if 0= 3
image = rgb2gray(double(image));
end

% convet to indexed
image = mat2gray(image);
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% get the size of the image so we know how many rows to operate on
% we already know that n = 1600
[m n] = size(image);

% forces a histogram adjustment that increases contrast in image
im = imadjust(image,[0.01 0.11],[0 1]);

% for normalization purposes make the top and bottom 5% of rows and right 33% of columns = 0
% to eliminate the presense of name markers and curves in x-ray
% NOTE: None of the images used contained tissue in this region!!!
for k = floor(0.90*m) : m

im(k,:) = 0;
end

for k = 1: floor(0.10*m)

im(k,:) = 0;
end

for d = floor(0.66*n) : n

im(:,d) = 0;
end

% perform the wavelet analysis on each line of the image
% and construct an approximation image
for i=l : m

% get the line to operate on
im_line = im(i,:);

% perform the DWT
[C L] = wavedec(im_line, 5, 'db5');

% get the approximation
line_al = C(1:L(1));

approx_image(i,:) = line_al;

end

% convert approximation image to a 0 to 1 scale
approx_image = approx_image/max(max(approx_image));

% value of threshold for approximation
threshold = 0.95;

% using the threshold look at each pair of values
% and determine the approximate point where the threshold is crossed
for k = 1 : m
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% initialize the edge variable
edge= 1;

% load the next image line
line_approx = approx_image(k,:);

for j = 1: length(line_approx)

% if the pair contains the threshold
if ((line_approx(j) > threshold) & (line_approx(j+1) <= threshold))

% these lines interpolate where the threshold is crossed
Q = line_approx(j)-line_approx(j+l);
W = threshold - line_approx(j+1);
E = W/Q;
R=(j+1)- E;
%R =j;
% This tells where the edge is
edge = floor(1600*(R/length(line_approx)));

end
end

% knowing the edge point make a line going low at that point
mask_line(l:edge) = 1;
mask_line(edge:n) = 0;

% add it to the mask image
mask(k,:) = mask_line;

% creat graph of edge
mask_plot(k) = edge;

end

% create polyfit of the mask edge graph
X = [l:length(mask_plot)];
[P S] = polyfit(X,mask_plot,8);
Y = polyval(P,X);

% create the other mask
for q = :length(Y)

edge_new = 1;

if floor(Y(q)) > 1
edge_new = floor(Y(q));

end

% creating the new mask image
mask_line_new(l:edge_new) = 1;
mask_line_new(edge_new:n) = 0;
mask_new(q,:) = mask_line_new;

end
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% write the polyfit mask for future use
imwrite(masknew, [image_file'_mask2.jpg'],jpg');

This code will calculate the estimated initial threshold for a given image and

output that threshold value.

function [thresh_out ] = thresh_estimate(im_in)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This function will take an image then
% calculate an estimated threshold for the image.
%
% Jeremy Neyhart
% Rowan Universiy Spring 2002
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

im_in
im = mat2gray(double(imread(im_in)),[0 255]);
im_mask = mat2gray(double(imread([im_in(1:8) '_mask2.bmp'])),[0 255]);

im = im.*im_mask;
mask_area = length(find(im_mask == 0));

[N Q] = size(im);
gray_levels = 256;

n=l;
for thresh=0: 1/gray_levels: 1;

im_bw = im2bw(im,thresh);
im_bw = double(imbw).*im_mask;
num_white = length(find(im_bw));
cdf_white(n) = num_white/((N*Q)-mask_area);
num_black = ((N*Q)-mask_area)-num_white;
cdf_black(n) = num_black/((N*Q)-mask_area);
n=n+ 1;

end

% Calculate curve fit of CDF
threshold=0: 1/gray_levels: 1;
[y_fit, x_fit, a_fit] = sigmoidfit(threshold,cdfblack);

% determine PDF of fit
pdf_black = diff(y_fit);

% index of maximum value of PDF
[M I] = max(pdfblack);

thresh_out = threshold(I)
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This code Calculates the Constrained Neyman-Pearson threshold then segments

the image and returns the percentage of radiodense tissue and the segmentation threshold.

function [prct_rd, t_np] = NM_analysis(im_in, thresh, a, blk_size)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Jeremy Neyahrt - Rowan University
% Spring 2002
%
% This program will calculate the average
% mean and average variance of the radiodense
% and radiolucent regions of an image then
% use the constrained Neyman-pearson method to determine the
% percentage of radiodense tissue in the image
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin == 0
im_in = input('Enter Image name:');
thresh = input('Enter threshold: ');
blk_size = input('Enter block size:');
a = input('Enter alpha:');

elseif nargin == 1
thresh = input('Enter Threshold:');
blk_size= [8 8];
a = input('Enter alpha:');

elseif nargin == 2
blk_size= [8 8];
a = input('Enter alpha:');

elseif nargin == 3
blk_size = [8 8];

end

imin

im = imread(im_in);
im = mat2gray(double(im),[0 255]);

im_mask = imread([ im_in(1:8) '_mask2.bmp']);
im_mask = mat2gray(double(im_mask));

% see if it's a model image or origional
% orig has 12 chars in name & you need mask
if length(im_in) > 12

im_mask = double(blk_rd_fun(im_mask));
end

im = im.*im_mask;

% generate an image with only the radiodense tissue all else = 0
rd = double(im2bw(im,thresh));
rd_area = length(find(rd==1));
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im_rd = im.*rd;

% generate an image with only the nonradiodense tissue all else = 0;
nrd = double(abs(rd - l).*im_mask);
nrd_area = length(find(nrd==l));
im_nrd = im.*nrd;

% generate mean and variance matrixs
im_rd_mean = blkproc(im_rd, blk_size,'mean_fun');
im_nrd_mean = blkproc(im_nrd, blk_size,'mean_fun');
im_var = blkproc(im, blk_size,'varfun');

% calculate the average mean and variance
ml = sum(sum(im_nrdmean))/nrd_area;
m2 = sum(sum(im_rd_mean))/rd_area;
s = sum(sum(im_var))/(prod(size(im)) - length(find(im_mask == 0)));

t_np=(m2+ml)/2 + ((a-s)/a)*((m2-ml)/2);
%im_np=blkproc(im,[1 1],'neyhart_mandayam',ml ,m2,s,a);
im_np=double(im2bw(im,t_np));
im_np = im_np.*im_mask;

prct_rd = 100*(length(find(im_np ==l))/(prod(size(im_np)) - length(find(im_mask == 0))));
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